Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Stephan Back, ${ }^{\text {a }}$ Gerd

Rheinwald, ${ }^{\text {a }}$ + Ignacio del Río, ${ }^{\text {b }}$ Gerard van Koten ${ }^{c}$ and Heinrich Lang ${ }^{\text {a }}$
${ }^{\text {a }}$ Technische-Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl Anorganische Chemie, Straße der Nationen 62, D-09111 Chemnitz, Germany, ${ }^{\mathbf{b}}$ Instituto de Química Organometálica Enrique Moles, Departamento de Química Orgánica e Inorgánica, Faculdad de Química, Universidad Oviedo, E-33071 Oviedo, Spain, and ${ }^{\text {c }}$ DebyeInstitute for Metal-Mediated Synthesis, Utrecht University, Padualaan 8, CH 3584 Utrecht, The Netherlands

+ Author to whom correspondance should be directed pertaining to the crystallographic section of this manuscript.

Correspondence e-mail:
heinrich.lang@chemie.tu-chemnitz.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.052$
$w R$ factor $=0.117$
Data-to-parameter ratio $=23.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

[mer,trans-($\left.\left.\mathrm{NN}^{\prime} \mathrm{N}\right) \mathrm{RuCl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ \{ $\mathrm{NN}^{\prime} \mathbf{N}=2,6$-bis-[(dimethylamino)methyl]pyridine\}

The title compound, mer,trans-\{2,6-bis[(dimethylamino)methyl]pyridine\}dichloropyridineruthenium(II) toluene solvate, $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, has metal-ligand dimensions of $\mathrm{Ru}-\mathrm{N}_{\mathrm{py}}\left(\mathrm{NN}^{\prime} \mathrm{N}\right) 1.962$ (2) $\AA, \mathrm{Ru}-\mathrm{N}\left(\mathrm{NN}^{\prime} \mathrm{N}\right)$ 2.348 (3) $\AA, \mathrm{Ru}-\mathrm{N}\left(\mathrm{NN}^{\prime} \mathrm{N}\right) 2.251$ (3) $\AA, \mathrm{Ru}-\mathrm{N}_{\mathrm{py}} 2.096$ (2) \AA and $\mathrm{Ru}-\mathrm{Cl} 2.3502$ (7) or 2.3581 (7) \AA (py = pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$). Angles are $\mathrm{N}_{\mathrm{py}}-\mathrm{Ru}-\mathrm{N}\left(\mathrm{NN}^{\prime} \mathrm{N}\right) 178.37(9)^{\circ},\left(\mathrm{NN}^{\prime} \mathrm{N}\right) \mathrm{N}-\mathrm{Ru}-$ $\mathrm{N}\left(\mathrm{NN}^{\prime} \mathrm{N}\right) 160.57$ (9) ${ }^{\circ}$ and $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl} 177.19$ (3) ${ }^{\circ}$.

Comment

Recently, interest has been focused on the chemistry of bisorthochelating aromatic ligands (Rietveld et al., 1997). This was due to their applicability to catalytic processes (Abbenhuis, del Río et al., 1998) or materials science (Steenwinkel et al., 1998). In this context, the dinitrogen-bridged bis-ruthenium complex $\{\mathrm{Ru}\} \mathrm{N} \equiv \mathrm{N}\{\mathrm{Ru}\}$, (I) $[\{\mathrm{Ru}\}=$ mer, trans$\left.\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-2,6\right) \mathrm{RuCl}_{2}\right]$ (Abbenhuis, Boersma \& van Koten, 1998), has been studied in the synthesis of bioactive arylpiperazines. In order to gain a deeper insight into the catalytic behaviour of (I), this homodinuclear complex was reacted with various N-donor molecules (del Río et al., 2000). Treatment of (I) with two equivalents of py ($\mathrm{py}=$ pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$) leads to the formation of the title compound $\{\mathrm{Ru}\}$ py $\cdot \mathrm{C}_{7} \mathrm{H}_{8}$, (II), in high yield by loss of N_{2}. We report here on the structure of (II), which incorporates two different types of pyridine ligands, i.e. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ and $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-2,6$.

(II)

The X-ray diffraction study confirms the general structure of (II), suggested on the basis of the NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and IR data of (II) (Fig. 1).

In (II), the $\mathrm{Ru}^{\mathrm{II}}$ centre occupies a distorted octahedral environment, with the three N -donor atoms of the $\mathrm{NN}^{\prime} \mathrm{N}$ ligand in a meridional position. The Cl atoms are forced into the apical positions and are trans-orientated to each other. In general, the $\mathrm{Ru}-\mathrm{N}_{\mathrm{py}}, \mathrm{Ru}-\mathrm{N}_{\mathrm{NMe}}$ and $\mathrm{Ru}-\mathrm{Cl}$ distances $\mathrm{Ru} 1-$ Cl1 [2.3502 (7) Å], Ru1-Cl2 [2.3581 (7) Å], Ru1-N1 $[1.962$ (2) \AA A $]$, Ru1-N2 $[2.348$ (3) Å] and $\mathrm{Ru} 1-\mathrm{N} 3$ $\left[2.251\right.$ (3) \AA], as well as the angles around the $R u^{I I}$ centre $\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{Cl} 2\left[177.19\right.$ (3)] and $\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 3\left[160.57\right.$ (9) ${ }^{\circ}$]

Received 23 May 2001
Accepted 11 September 2001 Online 20 September 2001

Figure 1
ZORTEP plot (50\% probability) of complex (II) with molecular geometry and atom-numbering scheme (the toluene solvate molecule is not shown for clarity).
of the $\{\mathrm{Ru}\}$ building block, are consistent with those values reported for this type of complex fragment (del Rio et al., 2000). The length of the Ru1-N4 bond of 2.096 (2) \AA is elongated when compared to the Ru1-N1 bond, but lies in the range of distances reported for other $\mathrm{Ru}^{\text {III }}$-pyridine complexes, e.g. $\left[\mathrm{Ru}(\mathrm{py})_{6}\right]^{2+}$ with $2.10-2.14 \AA$ (Templeton, 1979). Similar $\mathrm{Ru}-\mathrm{N}_{\mathrm{py}}$ distances are found, e.g. in $[\mathrm{RuCl}-$ (py) $\left.4_{4}(\mathrm{pz})\right]^{+}$with 2.105 (4) \AA (pz is pyrazine; Coe et al., 1995). This relatively short Ru1-N1 distance can best be explained by the imbedding of the $\mathrm{Ru}^{\mathrm{II}}$ centre into the framework of the bis-orthochelating $\mathrm{NN}^{\prime} \mathrm{N}$ ligand. The angle $\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 4$ [178.37 (9) ${ }^{\circ}$] illustrates the linearity of this array. The planes of the two pyridine ligands are tilted by $54.33(10)^{\circ}$ with respect to each other.

Experimental

A solution of $\{R u\} N \equiv \mathrm{~N}\{\mathrm{Ru}\}$, (I) ($128 \mathrm{mg}, 0.2 \mathrm{mmol}$), and py (32 mg , $0.4 \mathrm{mmol})$ in thf (30 ml) was stirred for 1 h at 298 K . During the course of the reaction, the colour of the solution turned from brown to red and the turbidity disappeared. The reaction mixture was then concentrated to 5 ml and n-pentane (50 ml) was added. The supernatant liquid was carefully decanted and the residue was dried in vacuo to yield (II) [$150 \mathrm{mg}, 95 \%$ yield based on (I)] as a red-brown solid. By diffusion of n-pentane into a dichloromethane/n-pentane solution of (II), with some added toluene, at 298 K , single crystals of (II) could be obtained. M.p.: 302 K (decomposition). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $[\delta] 2.38\left(s, 12 \mathrm{H}, \mathrm{NMe}_{2}\right), 4.03\left(s, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.1-7.2(m$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.3-7.4\left(m, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 7.7-7.8\left(m, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 9.6-9.7$ $\left.\left(m, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) .{ }^{13} \mathrm{C}_{\{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): [$\left.\delta\right] 53.6\left(\mathrm{NMe}_{2}\right), 72.1$ $\left(\mathrm{CH}_{2}\right), 118.6\left(\mathrm{CH} / \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 123.5\left(\mathrm{CH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 130.4\left(i-\mathrm{C} / \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)$, $133.6\left(\mathrm{CH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 156.4\left(\mathrm{CH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 163.2\left(\mathrm{CH} / \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)$. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Ru}$ (440.40): C 43.24, H 5.44, N 12.61%; found: C 43.79, H 5.78, N 12.23\%.

Crystal data

$\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$
$M_{r}=536.50$
Orthorhombic, Pbca
$a=12.7109$ (1) Å
$b=14.1115$ (2) \AA
$c=27.0317(3) \AA$
$V=4848.67(10) \AA^{3}$
$Z=8$
$D_{x}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD
diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.374, T_{\text {max }}=0.451$
43809 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.117$
$S=1.19$
9359 reflections
400 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 31497 reflections
$\theta=1.5-38.6^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, dark red
$1.20 \times 1.20 \times 0.90 \mathrm{~mm}$

$$
\begin{aligned}
& 9359 \text { independent reflections } \\
& 7687 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.041 \\
& \theta_{\max }=38.6^{\circ} \\
& h=-10 \rightarrow 20 \\
& k=-13 \rightarrow 20 \\
& l=-10 \rightarrow 43 \\
& \\
& \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0208 P)^{2}\right. \\
\quad+13.1818 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.015 \\
\Delta \rho_{\max }=2.07 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.86 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.00058(9)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ru} 1-\mathrm{Cl} 1$	$2.3501(7)$	$\mathrm{Ru} 1-\mathrm{N} 2$	$2.348(3)$
$\mathrm{Ru} 1-\mathrm{Cl} 2$	$2.3580(7)$	$\mathrm{Ru} 1-\mathrm{N} 3$	$2.251(3)$
$\mathrm{Ru} 1-\mathrm{N} 1$	$1.962(2)$	$\mathrm{Ru} 1-\mathrm{N} 4$	$2.096(2)$
			$88.47(10)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{Cl} 2$	$177.19(3)$	$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 3$	$160.57(9)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{N} 4$	$90.31(7)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 3$	$178.38(9)$
$\mathrm{Cl} 2-\mathrm{Ru} 1-\mathrm{N} 4$	$86.93(7)$	$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 4$	
$\mathrm{~N} 1-\mathrm{Ru} 1-\mathrm{N} 2$	$72.10(9)$		

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Huttner, 1994); software used to prepare material for publication: SHELX97.

References

Abbenhuis, R. A. T. M., Boersma, J. \& van Koten, G. (1998). J. Org. Chem. 63, 4282-4290.
Abbenhuis, R. A. T. M., del Río, I., Bergshoef, M. M., Boersma, J., Veldman, N., Spek, A. L. \& van Koten, G. (1998). Inorg. Chem. 37, 1749-1755.

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Coe, B. J., Meyer, T. J. \& White, P. S. (1995). Inorg. Chem. 34, 593-602.
Rietveld, M. H. P., Grove, D. M. \& van Koten, G. (1997). New J. Chem. 21, 751771.

Río, I. del, Hannu, M., Back, S., Rheinwald, G., Lang, H. \& van Koten, G. (2000). Inorg. Chim. Acta, 300-302, 1094.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SADABS. Version 2.01. University of Göttingen, Germany.
Steenwinkel, P., Grove, D. A., Veldman, N., Spek, A. L. \& van Koten, G. (1998). Organometallics, 17, 5647-5655.

Templeton, J. L. (1979). J. Am. Chem. Soc. 101, 4906.
Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg, Germany.

